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Self-organized criticality in two-variable models

Stefan Hergarten* and Horst J. Neugebauer†

Geodynamics - Physics of the Lithosphere, University of Bonn, D-53012 Bonn, Germany
~Received 10 September 1999!

We present a cellular automaton approach involving two variables and investigate its behavior with respect
to self-organized criticality~SOC!. It can be seen as a generalization of the Bak-Tang-Wiesenfeld and Olami-
Feder-Christensen models and exhibits SOC behavior, too. In contrast to these models it leads to a power law
distribution of the cluster sizes with an exponent close to one, as it occurs in earthquakes and landsliding
processes, without any tuning.

PACS number~s!: 05.65.1b, 0.5.45.Df, 91.30.Px
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I. INTRODUCTION

The concept of self-organized criticality~SOC! was intro-
duced by Per Bak and his co-workers in 1987@1–3#; it
turned out to be a powerful tool for explaining the occu
rence of fractal structures and 1/f noise in dynamic systems
A system shows SOC behavior if it tends towards a s
which is stationary except for fluctuations, and where
size distribution of the related events is fractal in space
time. In analogy to critical systems in thermodynamics, t
state is called ‘‘critical.’’ The fundamental difference b
tween conventional critical systems and SOC systems is
the first ones must be tuned to become critical, while S
systems organize themselves into the critical state. Thus
SOC concept is suitable for explaining why fractal structu
seem to be preferred in certain natural systems.

II. THE SEMINAL SOC MODELS

The basic models exhibiting SOC behavior are cellu
automata on regular grids. A dynamical variableui is as-
signed to each nodei of the lattice; this variable may be, e.g
a number of sand grains, a force, an energy or even a m
sure of fitness in a model of evolution.ui increases through
time continuously or in discrete steps. Ifui exceeds a given
thresholdG, the site i becomes unstable and relaxes. Th
means thatui decreases, while a part of the loss is transfer
to the neighbors of the node. If this transfer causes one o
neighbors to become unstable, it relaxes, too; this may re
in avalanches of different sizes. Jensen@4# summarized these
apparently fundamental criteria in the term ‘‘slowly drive
interaction dominated threshold systems.’’

The Olami-Feder-Christensen~OFC! @5# model can be
seen as a prototype of such a model. Starting with so
small random initial values, the continuous variablesui grow
through time at a constant rater:

] tui5r . ~1!

A site becomes unstable as soon asui reaches a threshol
valueG, i.e., as soon as the condition
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ui,G ~2!

is violated. In this case, the sitei relaxes according to

ui→0, uj→uj1aui for j PN~ i !, ~3!

wherea is a parameter andN( i ) denotes the nearest neigh
borhood of the sitei. On a quadratic, two-dimensional lattic
N( i ) consists of four nodes in the bulk, and two or thr
nodes at the boundary. After the sitei has relaxed, the sta
bility of the neighbors is checked. Those nodes which ha
become unstable are relaxed simultaneously according to
same rules; this procedure is repeated until all sites are st
again. Obviously, the sites affected by an avalanche form
cluster; their number is called ‘‘cluster size.’’ If the model
seen as a representation of a spatially distributed process
cluster size measures the size of the area affected by
avalanche. In general, the cluster size is smaller than
number of relaxations taking place during an avalanche
cause each site may relax several times. The number o
laxation cycles needed until all nodes have become st
again can be interpreted as the duration of the avalan
however, this duration cannot be linked with the time scat
because relaxation takes place immediately.

In the one- and two-dimensional case, this approach
be seen as a cellular automaton representation of
Burridge-Knopoff @6# model for the occurrence of earth
quakes at a fault. Here,ui corresponds to a force acting on
block in a block-spring model. This analogy restricts the p
rametera according to 2da<1, whered is the spatial di-
mension. For 2da51, the force is completely transferred t
the neighbors in case of an instability, so that the mode
conservative except for boundary effects. If 2da,1, a frac-
tion 122da is lost; the model is nonconservative.

Figure 1 shows the probability density of the cluster siz
in the two-dimensional OFC model on a 64364 grid for
different values ofa. The boundary sites are treated in th
same way as the interior ones; the amount ofui passing the
boundary is lost. The simulations include 23107 avalanches;
in order to avoid artificial effects of the initial condition
only the second half of them is included in the statistics.

In the conservative case (a5 1
4 ), the probability density is

a power law with an exponent of about7
6; it increases asa

decreases. The empirically found Gutenberg-Richter law

:
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earthquakes@7# states exponents between 1.8 and 2.2;
behavior is achieved ifa is about 0.2.

Several authors@8–11# found out that the SOC behavio
of the OFC model turns into a periodic state ifa decreases
below a certain value; however, there is still a discuss
about this critical value@4#. A second aspect that still re
ceives attention is the sensitivity of the nonconservative O
model against changes in the boundary conditions@4#.

From a general point of view, the original Bak-Tan
Wiesenfeld~BTW! @1,2# model is quite similar to the OFC
model in the conservative case. Thus, the OFC model ca
seen as a generalization of the BTW model. Except for
conservation, the major difference is that the BTW mode
based on a discrete variable and is driven randomly.
behavior is quite similar, although the exponents dif
slightly.

III. LANDSLIDES AS A SOC PHENOMENON

In addition to earthquakes, landslides are one of the m
striking phenomena exhibiting fractal magnitude statistics
earth sciences. Results from landslide mapping@12–15#
show that the exponent of the probability density of landsl
area is close to two and thus quite similar to that of ea
quakes.

For this analogy, the idea of transferring the OFC mo
to landslide dynamics is tempting; but it was not succes
yet. Landsliding is decisively controlled by the geometry
the land surface, especially by the slope gradient and per
by the second derivatives. Thus, the model variableui should
represent these quantities; in the simplest case by a li
combination of both. This leads to a strictly conservat
OFC model, as can be seen by the following argument
F(x1 ,x2) is an arbitrary function within a two dimensiona
domainV, the theorem of Gauss guarantees that the ove
~integrated! value of] iF(x1 ,x2) only depends on the value
of F at the boundaries

E
V

] iF~x1 ,x2!dx1dx25E
]V

F~x1 ,x2!nidx, ~4!

whereni denotes thei th component of the outer normal ve
tor. This relation holds for any reasonable discretization,
that changes in surface height at the interior nodes do

FIG. 1. Probability density of the cluster sizes in the tw
dimensional OFC model on a 64364 grid for different levels of
conservation.
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affect the sum of theui over the region. This implies that th
loss ofui occurring due to a landslide at any interior point
completely distributed to the neighborhood. In contrast
Eq. ~3!, the redistribution may be anisotropic; this results
exponents which are slightly larger than7

6, but the exponents
are still far away from the observed value close to two. Th
the BTW and OFC models are not suitable for explaining
spatial ‘‘fingerprint’’ of landslide dynamics from a quantita
tive point of view.

IV. TWO-VARIABLE APPROACHES

As many physical systems, landslide dynamics canno
described by a single variable; even if the surface geom
remains constant, the risk of a landslide increases thro
time due to time-dependent weakening of the failure pla
This effect can be incorporated by introducing a second v
ablev i and a stability criterion that depends on bothui and
v i .

In the simplest case, bothui and v i grow through time
uniformly and at constant rates

] tui5r u , ] tv i5r v . ~5!

If we consider a slope, a uniform growth ofui can result
from slowly tilting the slope, perhaps as a consequence
tectonic forces. In the following, we restrict our conside
ations to regular, two-dimensional lattices.

As discussed above, the relaxation rule forui must be
conservative. For simplicity, we only consider the isotrop
case, but our computations have shown that a modest an
ropy does not affect the results. Whilev i describes the state
of weakening, its value should be lost completely in case
a landslide, so that the relaxation rules read

ui→0, v i→0, uj→uj1
ui

4
for j PN~ i !. ~6!

There are several ways of combining the variablesui and
v i in the stability criterion. The most basic ways are addi
or multiplying both.

A. The sum approach

Let us first take a linear combination ofui and v i as a
criterion for the stability of the nodei:

luui1lvv i,G, ~7!

wherelu and lv are positive numbers. The model can
scaled by a transformation

uiª
lu

G
ui , v iª

lv

G
v i , tª

lur u1lvr v

G
t. ~8!

After this, the rule for driving the model reads

] tui5b, ] tv i512b, ~9!

where

b5
luui

luui1lvv i
P@0,1#. ~10!
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The criterion for the stability of the nodei now reads

ui1v i,1. ~11!

Although this approach produces power law statistics for
cluster sizes, it is not critical in the sense of SOC: Fig
shows that the exponent of the power law depends on
mesh size for small values ofb. In contrast, the concept o
SOC only allows a cutoff at large event sizes as an effec
the finite grid size. In general, identifying such a mod
where the grid size affects the results strongly with a phy
cal process is difficult.

Further simulations show that the grid size effect vanis
for larger values ofb; but in this case the effect of the secon
variable becomes negligible and the model leads to the c
servative OFC model. Thus, the sum approach is nor ap
cable to landslide dynamics, neither does it provide a r
extension of the OFC model.

B. The product approach

Another elementary way of combining two variables to
stability criterion is

uiv i,G. ~12!

There is a fundamental difference between sum and pro
approach: In the sum approach, a lack ofui can easily be
compensated by an increase ofv i and vice versa. In contras
if ui is small, a very large value ofv i is necessary to com
pensate this in a product. This means that each of the v
ables is somehow able to inhibit instability in the produ
approach. Thus, this approach is reasonable for proce
such as landsliding; e.g., if the surface is flat, even a v
weak material remains stable.

Again, the variables and the time can be rescaled:

uiªA r v

Gr u
ui , v iªA r u

Gr v
v i , tªAr ur v

G
t. ~13!

After this, the rule for driving the model reads

] tui5] tv i51, ~14!

and the criterion for the stability of the nodei turns into

FIG. 2. Probability density of the cluster sizes in the sum
proach forb50.01 on grids of different sizes. Statistics and boun
ary conditions are the same as for the OFC model shown abov
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uiv i,1. ~15!

Figures 3 and 4 show the probability densities of clus
sizes and avalanche lifetimes resulting from this approach
grids of different sizes. Statistics and boundary conditio
are the same as for the OFC model shown above. Both s
a power law behavior; the finite grid size only enters in fo
of a cutoff at large cluster sizes or lifetimes. As required
SOC, the cutoff effect is shifted towards larger events as
grid size increases.

Thus, the product approach exhibits proper SOC beh
ior. From a quantitative point of view, it is remarkable th
the exponent of the probability density of the cluster sizes
close to two without any tuning. This leads to a fractal d
tribution of the cluster sizes with an exponent close to o
as it is observed in landsliding processes@12–15#.

V. CONCLUSION

Motivated by the aim of relating landslide dynamics
SOC we have presented a two-variable product appro
From a basic point of view, this model is a quite straightfo
ward extension of the fundamental BTW and OFC mod
which are, however, not able to reproduce the fractal s
distribution of landslides quantitatively.

The model shows similar results as the BTW and O
models, but from a quantitative point of view the spat
cluster size distributions differ: While the exponent of t
BTW model is close to zero~i.e., one for the density! and the

-
-
.

FIG. 3. Probability density of cluster sizes in the product a
proach on grids of different sizes.

FIG. 4. Probability density of avalanche lifetimes in the produ
approach on grids of different sizes.
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exponent of the OFC model can be tuned, the product
proach leads to exponents close to 1~i.e., two for the den-
sity! without any tuning. Within the accuracy of field me
surements, this value fits well to observed landslide statis
ed

et

,

p-

s.

We suspect that some other phenomena exhibiting SOC
havior with cluster size distributions with exponents close
one might be explained by the dynamics of two variables
this sense.
ys.
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