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Self-organized criticality in two-variable models
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(Received 10 September 1999

We present a cellular automaton approach involving two variables and investigate its behavior with respect
to self-organized criticalitySOQ. It can be seen as a generalization of the Bak-Tang-Wiesenfeld and Olami-
Feder-Christensen models and exhibits SOC behavior, too. In contrast to these models it leads to a power law
distribution of the cluster sizes with an exponent close to one, as it occurs in earthquakes and landsliding
processes, without any tuning.

PACS numbgs): 05.65:+b, 0.5.45.Df, 91.30.Px

I. INTRODUCTION u<T (2

The concept of self-organized criticali @O0 was intro-
duced by Per Bak and his co-workers in 198~3]; it
turned out to be a powerful tool for explaining the occur-
rence of fractal structures andf Iioise in dynamic systems.
A system shows SOC behavior if it tends towards a state
which is stationary except for fluctuations, and where thewherea is a parameter anh(i) denotes the nearest neigh-
size distribution of the related events is fractal in space antborhood of the sité. On a quadratic, two-dimensional lattice
time. In analogy to critical systems in thermodynamics, thisN(i) consists of four nodes in the bulk, and two or three
state is called “critical.” The fundamental difference be- nodes at the boundary. After the sitéas relaxed, the sta-
tween conventional critical systems and SOC systems is thdiility of the neighbors is checked. Those nodes which have
the first ones must be tuned to become critical, while SOMecome unstable are relaxed simultaneously according to the
systems organize themselves into the critical state. Thus, treame rules; this procedure is repeated until all sites are stable
SOC concept is suitable for explaining why fractal structuresagain. Obviously, the sites affected by an avalanche form a

is violated. In this case, the sitaelaxes according to

ui—0, uj—u;+au; for jeN(i), 3

seem to be preferred in certain natural systems. cluster; their number is called “cluster size.” If the model is
seen as a representation of a spatially distributed process, the
Il. THE SEMINAL SOC MODELS cluster size measures the size of the area affected by the

. . . avalanche. In general, the cluster size is smaller than the
The basic models exhibiting SOC behavior are cellular,,mper of relaxations taking place during an avalanche be-
automata on regular grids. A dynamical variableis as-

. h t the Iattice: thi il cause each site may relax several times. The number of re-
signed to each nodef the lattice; this variable may be, €.9., |axation cycles needed until all nodes have become stable

a number of sand grains, a force, an energy or even & Megqyain can be interpreted as the duration of the avalanche:

sure of fitness in a model of evolution; increases through  pq\yever, this duration cannot be linked with the time stale
time continuously or in discrete steps.uf exceeds a given pacause relaxation takes place immediately.

thresholdI', the sitei becomes unstable and relaxes. This |, the one- and two-dimensional case, this approach can
means thatl; decreases, while a part of the loss is transferreq)e seen as a cellular automaton representation of the
to the neighbors of the node. If this transfer causes one of thBurridge-Knopoff [6] model for the occurrence of earth-
neighbors to become unstable, it relaxes, too; this may resu&uakes at a fault. Here, corresponds to a force acting on a
in avalanches of different sizes. Jengéhsummarized these pock in a block-spring model. This analogy restricts the pa-
apparently fundamental criteria in the term “slowly driven, rametera according to 2e<1, whered is the spatial di-

interaction dominated threshold systems.” mension. For Ba =1, the force is completely transferred to
The Olami-Feder-Christensef©FC) [5] model can be he peighbors in case of an instability, so that the model is

Seen as a prqtt_)t_ype of such a m(_)del. Start!ng with SOMEqservative except for boundary effects. d<1, a frac-
small ran_dom initial values, the continuous variablegrow o1 1244 is lost: the model is nonconservative.
through time at a constant rate Figure 1 shows the probability density of the cluster sizes
Ui =T. (1) ir! the two-dimensional OFC model on a %64 grid f_or
different values ofa. The boundary sites are treated in the
A site becomes unstable as soonuageaches a threshold same way as the interior ones; the amountiopassing the
valueTl, i.e., as soon as the condition boundary is lost. The simulations includ20’ avalanches;
in order to avoid artificial effects of the initial conditions
only the second half of them is included in the statistics.
*Electronic  address:  hergarten@geo.uni-bonn.de;  URL: In the conservative case( 1), the probability density is
www.geo.uni-bonn.de/members/hergarten/hergarten.html a power law with an exponent of abofjtit increases as
"Electronic address: neugb@geo.uni-bonn.de decreases. The empirically found Gutenberg-Richter law for
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10° ¢ . . . affect the sum of the; over the region. This implies that the
y "’\ 0=025 — loss ofu; occurring due to a landslide at any interior point is

o 10 TR O = 0.225 o - completely distributed to the neighborhood. In contrast to
'§ 102 -] Eq. (3), the redistribution may be anisotropic; this results in
S 7 . a=015 e exponents which are slightly larger thgnbut the exponents
2 10° ; are still far away from the observed value close to two. Thus,
a the BTW and OFC models are not suitable for explaining the
S 10 spatial “fingerprint” of landslide dynamics from a quantita-
100 tive point of view.

10'61 e o T 10° o IV. TWO-VARIABLE APPROACHES

cluster size As many physical systems, landslide dynamics cannot be

FIG. 1. Probability density of the cluster sizes in the two- described by a single variable; even if the surface geometry
dimensional OFC model on a 844 grid for different levels of remains constant, the risk of a landslide increases through
conservation. time due to time-dependent weakening of the failure plane.

This effect can be incorporated by introducing a second vari-

earthquake$7] states exponents between 1.8 and 2.2; thigblev; and a stability criterion that depends on bethand
behavior is achieved if is about 0.2. Uj.

Several authorf8—11] found out that the SOC behavior  In the simplest case, botly andv; grow through time
of the OFC model turns into a periodic statevifdecreases uniformly and at constant rates
below a certain value; however, there is still a discussion
about this critical valug4]. A second aspect that still re- HU=Ty, HUi=T,. )
ceives attention is the sensitivity of the nonconservative OF

model against changes in the boundary conditigiis Cff we consider a slope, a uniform growth af can result

from slowly tilting the slope, perhaps as a consequence of

From a general point of view, the original Bak-Tang- tectonic forces. In the following, we restrict our consider-
Wiesenfeld(BTW) [1,2] model is quite similar to the OFC __. ' . Ing, .
. ' ations to regular, two-dimensional lattices.
model in the conservative case. Thus, the OFC model can be ; .
As discussed above, the relaxation rule fgrmust be

seen as a generalization of the BTW model. Except for the ; A . . .
conservation, the major difference is that the BTW model isconservauve. For S|mp]|C|ty, we only consider the |sotrop|c
based on a discrete variable and is driven randomly. Th&§25¢: but our computations have shqwn that_a modest anisot-
behavior is quite similar, although the exponents differ@PY does not affect the results. While describes the state

of weakening, its value should be lost completely in case of

slightly. a landslide, so that the relaxation rules read
IIl. LANDSLIDES AS A SOC PHENOMENON U; . .
ui—0, v;—0, uj—>uj+z for jeN(i). (6)

In addition to earthquakes, landslides are one of the most
striking phenomena exhibiting fractal magnitude statistics in There are several ways of combining the variahleand

earth sciences. Results from landslide mappjig@—15 . o L . .
show that the exponent of the probability density of Iandslideg‘r Irrr]u;tlr::a Istiibnggtﬁrlterlon. The most basic ways are adding
area is close to two and thus quite similar to that of earth- pying '
guakes.

For this analogy, the idea of transferring the OFC model
to landslide dynamics is tempting; but it was not successful Let us first take a linear combination aof andv; as a
yet. Landsliding is decisively controlled by the geometry of criterion for the stability of the node
the land surface, especially by the slope gradient and perhaps
by the second derivatives. Thus, the model variablshould AU+ N0 <T, (7
represent these quantities; in the simplest case by a linear -
combination of both. This leads to a strictly conservative’/1€réAu and\, are positive numbers. The model can be
OFC model, as can be seen by the following argument: (F¢@led by a transformation
F(x1,X,) is an arbitrary function within a two dimensional N N NI
domain(}, the theorem of Gauss guarantees that the overall Uj=—U;, vji=—p;, ti=————"t, )
(integrated value of 9;F (x4 ,x,) only depends on the values I I I
of F at the boundaries

A. The sum approach

After this, the rule for driving the model reads

f ﬁiF(xl,xz)dxldxzzf F(Xq,Xo)NdXx, (4) Ui =g, dwi=1-p4, ©)
Q Fo)
where
wheren; denotes théth component of the outer normal vec- N
tor. This relation holds for any reasonable discretization, so B _ M e[0,1]. (10)

that changes in surface height at the interior nodes do not ©ONU T
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FIG. 2. Probability density of the cluster sizes in the sum ap- FIG. 3. Probability density of cluster sizes in the product ap-
proach for3=0.01 on grids of different sizes. Statistics and bound-proach on grids of different sizes.
ary conditions are the same as for the OFC model shown above.

L . ujvi<1. (19

The criterion for the stability of the nodenow reads
Figures 3 and 4 show the probability densities of cluster
sizes and avalanche lifetimes resulting from this approach on
egrids of different sizes. Statistics and boundary conditions
are the same as for the OFC model shown above. Both show
a power law behavior; the finite grid size only enters in form
of a cutoff at large cluster sizes or lifetimes. As required for
\SOC, the cutoff effect is shifted towards larger events as the

Ui+Ui<l. (11)

Although this approach produces power law statistics for th
cluster sizes, it is not critical in the sense of SOC: Fig. 2
shows that the exponent of the power law depends on th
mesh size for small values ¢@. In contrast, the concept of

SOC only allows a cutoff at large event sizes as an effect o

e AR : o id size increases.
the finite grid size. In general, identifying such a model 9" -
where the grid size affects the results strongly with a physi- Thus, the prod_uct_ appro_ach ex_h|b|t§ proper SOC behav-
cal process is difficult. ior. From a quantitative point of view, it is remarkable that

Further simulations show that the grid size effect vanisheéhe exponent O.f the probabili_ty dens_ity of the cluster size:?‘ is
for larger values of3; but in this case the effect of the second cllose. to two without any tuning. This leads to a fractal dis-
variable becomes negligible and the model leads to the corfibution of the cluster sizes with an exponent close to one,
servative OFC model. Thus, the sum approach is nor applﬁ‘s it is observed in landsliding proces$&g-1.
cable to landslide dynamics, neither does it provide a real

extension of the OFC model. V. CONCLUSION

Motivated by the aim of relating landslide dynamics to
SOC we have presented a two-variable product approach.

Another elementary way of combining two variables to aFrom a basic point of view, this model is a quite straightfor-
stability criterion is ward extension of the fundamental BTW and OFC models
which are, however, not able to reproduce the fractal size
distribution of landslides quantitatively.
_ ] The model shows similar results as the BTW and OFC
There is a fundamental difference between sum an_d produgfodels, but from a guantitative point of view the spatial
approach: In the sum approach, a lackupfcan easily be  cjyster size distributions differ: While the exponent of the

compensated by an increasevefand vice versa. In contrast, BTW model is close to zer6.e., one for the densiiyand the
if u; is small, a very large value af; is necessary to com-
pensate this in a product. This means that each of the vari-

B. The product approach

Uil)i<F. (12)

ables is somehow able to inhibit instability in the product 256x256
approach. Thus, this approach is reasonable for processes 10" ¢ 128x128 ;
such as landsliding; e.g., if the surface is flat, even a very % »
weak material remains stable. 5 10
Again, the variables and the time can be rescaled: 2 10°
T_E“
ry My rury '8 10_4
Ui=\/=—U, vi==\/=—vj, ti=\/—1t. (13 5
: Cr, " ! Ir, r = 0%
After this, the rule for driving the model reads 10“"’100 1'01 11-—02

dUi=dw;=1, (14) lifetime

FIG. 4. Probability density of avalanche lifetimes in the product

and the criterion for the stability of the nodeurns into approach on grids of different sizes.
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exponent of the OFC model can be tuned, the product apA/e suspect that some other phenomena exhibiting SOC be-
proach leads to exponents close tdi.k., two for the den- havior with cluster size distributions with exponents close to
sity) without any tuning. Within the accuracy of field mea- one might be explained by the dynamics of two variables in
surements, this value fits well to observed landslide statisticghis sense.
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